skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gharaibeh, Ahmad R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In recent years, electronic packaging has evolved significantly to meet demands for higher performance, lower costs, and smaller designs. This shift has led to heterogeneous packaging, which integrates chips of varying stack heights and results in non-uniform heat flux and temperature distributions. These conditions pose substantial thermal management challenges, as they can create large temperature gradients, which increase thermal stress and potentially compromise chip reliability. This study explores single-phase liquid cooling for multi-chip modules (MCMs) through a comprehensive experimental and machine learning approach. It investigates the impact of chip spacing, height, fluid flow rate, fluid inlet location, and heat flux uniformity on chip temperature and the thermohydraulic performance of a commercial cold plate. Results show that increasing coolant flow from 1 LPM to 2 LPM decreased thermal resistance by 26 %, with heat losses remaining below 5 %. The left inlet configuration improved temperature uniformity compared to the right, though both yielded comparable thermal performance. Adjusting heater spacing impacted temperature distribution based on inlet position, and lowering one heater by 1 mm raised its temperatures by 15 ◦C due to increased thermal resistance from thermal interface material. A transient test demonstrated the cold plate’s quick response to power surges, in which there is only a 1 ◦C spike above steady state. Complementing these findings, an Artificial Neural Network (ANN) model was developed with optimized architecture specifically for the unique challenges of this study. The ANN model was rigorously validated using an independent dataset, achieving highly accurate temperature predictions (R2 = 0.99) within 2.5 % of experimental 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. The variety of new electronic packaging technologies has grown significantly over the last 20 years as a result of market demands for higher device performance at lower costs and in less space. Those demands have pushed for heterogeneous packaging, where computer chips with different stack heights are closely packed, creating nonuniform heat flux and temperature and additional challenges for thermal management. Without implementing an appropriate thermal management strategy for heterogeneous packages, large temperature gradients can be observed within the package, which would increase the thermal stresses on the chip and raise reliability issues. To mimic this real-life scenario of such packaging, an experimental setup was designed and built. The design of the new experimental setup consists of four identical 1.2 cm × 1.2 cm ceramic heaters, each of which is connected to a separate power supply and can reach a heat flux of 140 W/cm2. Accordingly, this mock package is capable of delivering different power levels to mimic different multicore microprocessor conditions. To give the heater the ability to move precisely in the x-, y-, and z-directions, each heater is mounted to an XYZ linear stage. Deionized water (DI) was used as the working fluid, and a pin-fin heat sink was used to run the initial steady-state tests on the experimental rig. The tests showed how different flow rates at a constant fluid temperature and input power affect the temperatures of the heaters and the thermohydraulic performance of the heat sink. In addition, a three-dimensional numerical model has been developed and validated with experimental data in terms of heat sink pressure drop and the temperatures of the heaters. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. As web-based AI applications are growing rapidly, server rooms face escalating computational demands, prompting enterprises to either upgrade their facilities or outsource to co-located sites. This growth strains conventional heating ventilation and air-conditioning (HVAC) systems, which struggle to handle the substantial thermal load, often resulting in hotspots. Liquid-to-air (L2A) coolant distribution units (CDUs) emerge as a solution, efficiently cooling servers by circulating liquid coolant through cooling loops (CLs) mounted on each server board. In this study, the performance of a 24-kW L2A CDU is evaluated across various scenarios, emphasizing cooling effect and stability. Experimental tests involve a rack with three thermal test vehicles (TTVs), monitoring both liquid coolant and air sides for analysis. Tests are conducted in a limited air-conditioned environment, resembling upgraded server rooms with conventional AC systems. The study also assesses the impact of high-power density cooling units on the server room environment, measuring noise, air velocity, and ambient temperature against ASHRAE standards for human comfort. Recommendations for optimal practices and potential system improvements are included in the research, addressing the growing need for efficient cooling solutions amidst escalating computational demands. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  4. The ability of traditional room-conditioning systems to accommodate expanding information technology loads is limited in contemporary data centers (DCs), where the storage, storing, and processing of data have grown quickly as a result of evolving technological trends and rising demand for online services, which has led to an increase in the amount of waste heat generated by IT equipment. Through the implementation of hybrid air and liquid cooling technologies, targeted, on-demand cooling is made possible by employing a variety of techniques, which include but are not limited to in-row, overhead, and rear door heat exchanger (HX) cooling systems. One of the most common liquid cooling techniques will be examined in this study based on different conditions for high-power density racks (+50 kW). This paper investigates the cooling performance of a liquid-to-air in-row coolant distribution unit (CDU) in test racks containing seven thermal test vehicles (TTVs) under various conditions, focusing on cooling capacity and HX effectiveness under different supply air temperatures (SAT). This test rig has the necessary instruments to monitor and analyze the experiments on both the liquid coolant and the air sides. Moreover, another experiment is conducted to assess the performance of the CDU that runs under different control fan schemes, as well as how the change of the control type will affect the supply fluid temperature and the TTV case temperatures at 10%, 50%, and 100% of the total power. Finally, suggestions for the best control fan scheme to use for these systems and units are provided at the conclusion of the study. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  5. The rapid growth in data center workloads and the increasing complexity of modern applications have led to significant contradictions between computational performance and thermal management. Traditional air-cooling systems, while widely adopted, are reaching their limits in handling the rising thermal footprints and higher rack power densities of next-generation servers, often resulting in thermal throttling and decreased efficiency, emphasizing the need for more efficient cooling solutions. Direct-to-chip liquid cooling with cold plates has emerged as a promising solution, providing efficient heat dissipation for high-performance servers. However, challenges remain, such as ensuring system stability under varying thermal loads and optimizing integration with existing infrastructure. This comprehensive study digs into the area of data center liquid cooling, providing a novel, comprehensive experimental investigation of the critical steps and tests necessary for commissioning coolant distribution units (CDUs) in direct-to-chip liquid-cooled data centers. It carefully investigates the hydraulic, thermal, and energy aspects, establishing the groundwork for Liquid-to-Air (L2A) CDU data centers. A CDU’s performance was evaluated under different conditions. First, the CDU’s maximum cooling capacity was evaluated and found to be as high as 89.9 kW at an approach temperature difference (ATD) of 18.3 ◦C with a 0.83 heat exchanger effectiveness. Then, to assess the cooling performance and stability of the CDU, a low-power test and a transient thermohydraulic test were conducted. The results showed instability in the supply fluid temperature (SFT) caused by the oscillation in fan speed at low thermal loads. Despite this, heat removal rates remained constant across varying supply air temperatures (SATs), and a partial power usage effectiveness (PPUE) of 1.042 was achieved at 100 % heat load (86 kW) under different SATs. This research sets a foundation for improving L2A CDU performance and offers practical insights for overcoming current cooling limitations in data centers. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  6. Owing to the dramatic increase in IT power density and energy consumption, the data center (DC) sector has started adopting thermally- and energy-efficient liquid cooling methods. This study examines a single-phase direct-to-chip liquid cooling approach for three high-heat-density racks, utilizing two liquid-to-air (L2A) cooled coolant distribution units (CDUs) and a combined total heat load of 128 kW. An experimental setup was developed to test different types of CDUs, cooling loops, and thermal testing vehicles (TTVs) for different operating conditions. IR images and the collected data were used to investigate the effect of air recirculation between cold and hot aisle containments on the CDU’s performance and stability of supply air temperature (SAT). Three different types of cooling loops (X, Y, and Z) were characterized thermally and hydraulically. Results show that Type Y has the lowest cold plate thermal resistance and pressure drop, among others. In a later test that included a single rack at a heat load of 53 kW and a single CDU, the heat capture ratio for fluid was found to be 94%. Experiments show that using blanking panels on the back of the racks limits hot air recirculation and maintains a steady SAT in the cold aisle. Finally, the CDU performance was evaluated at a high heat load for the three racks at 128 kW, and the average cooling capacity of the units is 58.6 kW, and the effectiveness values for CDU 1 and CDU 2 are 0.83 and 0.82, respectively. 
    more » « less
  7. More than ever before, data centers must deploy robust thermal solutions to adequately host the high-density and high-performance computing that is in high demand. The newer generation of central processing units (CPUs) and graphics processing units (GPUs) has substantially higher thermal power densities than previous generations. In recent years, more data centers rely on liquid cooling for the high-heat processors inside the servers and air cooling for the remaining low-heat information technology equipment. This hybrid cooling approach creates a smaller and more efficient data center. The deployment of direct-to-chip cold plate liquid cooling is one of the mainstream approaches to providing concentrated cooling to targeted processors. In this study, a processor-level experimental setup was developed to evaluate the cooling performance of a novel computer numerical control (CNC) machined nickel-plated impinging cold plate on a 1 in.  1 in. mock heater that represents a functional processing unit. The pressure drop and thermal resistance performance curves of the electroless nickel-plated cold plate are compared to those of a pure copper cold plate. A temperature uniformity analysis is done using compuational fluid dynamics and compared to the actual test data. Finally, the CNC machined pure copper one is compared to other reported cold plates to demonstrate its superiority of the design with respect to the cooling performance. 
    more » « less
  8. Abstract The increased power consumption and continued miniaturization of high-powered electronic components have presented many challenges to their thermal management. To improve the efficiency and reliability of these devices, the high amount of heat that they generate must be properly removed. In this paper, a three-dimensional numerical model has been developed and experimentally validated for several manifold heat sink designs. The goal was to enhance the heat sink's thermal performance while reducing the required pumping power by lowering the pressure drop across the heat sink. The considered designs were benchmarked to a commercially available heat sink in terms of their thermal and hydraulic performances. The proposed manifolds were designed to distribute fluid through alternating inlet and outlet branched internal channels. It was found that using the manifold design with 3 channels reduced the thermal resistance from 0.061 to 0.054 °C/W with a pressure drop reduction of 0.77 kPa from the commercial cold plate. A geometric parametric study was performed to investigate the effect of the manifold's internal channel width on the thermohydraulic performance of the proposed designs. It was found that the thermal resistance decreased as the manifold's channel width decreased, up until a certain width value, below which the thermal resistance started to increase while maintaining low-pressure drop values. Where the thermal resistance significantly decreased in the 7 channels design by 16.4% and maintained a lower pressure drop value below 0.6 kPa. 
    more » « less